National Repository of Grey Literature 8 records found  Search took 0.00 seconds. 
EPR Study of Radical Intermediates of H-transfer from Oxygeneous, Carboneous and Nitrogeneous Donors
Marešová, Renata ; Mazúr, Milan (referee) ; Stopka, Pavel (referee) ; Omelka, Ladislav (advisor)
Within the PhD. thesis the problems of H-transfer from selected types of phenols, aromatic secondary amines and compounds with acidic CH bond were investigated. This process was initiated by the action of redox agents, mostly PbO2, in nonpolar solvents. The abstraction of hydrogen atom results in the formation of radical intermediates, which were detected by EPR spectroscopy. Because in most cases, highly unstable radicals were produced, it was neccessary to apply the technique of indirect detection, so called spin trapping. This method enables to interpret the character of generated radicals on the basis of EPR parameters of radical adducts, which are formed by their reaction with suitably chosen compounds, spin traps, which are added to the reaction system. As spin traps, the aromatic nitrosocompounds were preferentially used. Due to the fact that EPR spectra of radical adducts were in most cases very complex, their interpretation was possible only using the computer simulation. Based on this approach, new information about the character of addition of phenoxyl tradicals to aromatic nitrosocompounds, stability of alkyl substituents in methyl substituted phenols and character of C-radicals, generated from substituted coumarines and beta-diketones, was obtained. Simultaneously, the small ability of nitrogen radicals, primary products of the splitting of NH bond, to enter the reaction with spin traps was proved by aromatic secondary amines.
Radical products of the oxidation of selected phenols and amines
Holubcová, Petra ; Mazúr, Milan (referee) ; Omelka, Ladislav (advisor)
In the framework of diploma thesis, radical products of the oxidation of selected para­methyl phenols and secondary amines were investigated. In the case of para-methyl phenols using EPR spectroscopy the reaction mechanism was proved, where the abstraction of hydrogen from para-methyl group is involved. In this way benzyl radicals are formed, which can be identified by spin-trapping technique using nitroso compounds. The adducts formed undergo the consecutive rearrangement, which leads to the formation of the corresponding nitrones. In addition to phenols, the radical products of the oxidation of some secondary amines using peroxy radicals and peroxy acids were studied. In both cases new types of nitroxyle radicals were generated and the EPR parameters were determined by spectral simulation.
Radical intermediates generated by the splitting of X-H bond in different types of H-donors
Šafaříková, Lenka ; Mazúr, Milan (referee) ; Omelka, Ladislav (advisor)
In the frame of submitted diploma thesis dealing with the radical products of the decomposition of different X-H bonds, primary attention was focused on the detection of radical intermediates from decomposed N-H bonds. This access was realized with secondary amines of N-alkylaniline group, as well as with other structures R1-NH-R2. The aim was to confirm the formation of unstable aminyl radicals R1-N•-R2, which is possible by using spin-trapping method. In the series of experiments, where the compounds of lead and cobalt, as well as stable radical DPPH were applied as initiators of the decomposition, the unambiguous evidence for aminyl radicals was found only in the case of N-alkylanilines. With other secondary amines the detection of aminyl radicals is an open problem, because their adducts with nitrosobenzene are in very low concentration. Besides the study of the decomposition of N-H bonds also the products of the decomposition of phenolic O-H bonds, as well as products of the decomposition of C-H bonds in alkylsubstituents in phenols was studied.
Spin-trapping of radical products of H-transfer from oxygeneous donors
Šafaříková, Lenka ; Polovka, Martin (referee) ; Omelka, Ladislav (advisor)
Within the bachelor thesis the evaluation of experimental material focused on EPR study of spin-trapping of phenoxyl radicals on aromatic nitrosocompounds was performed. It was found that phenoxyl radicals from unhindered phenols add to nitrosogroup in the ortho-position. As a result, the nitroxyl radicals are formed. According to the structure of nitrosocompounds this nitroxyl radicals have the character either of phenoxazinoxyl radicals in the case of nitrosobenzene or derivatives of diphenylnitroxyl radical in the case of nitrosoduren. In the work is also documented the specific behavior of some phenols containing methyl group as the para substituent.
EPR Study of Radical Intermediates of H-transfer from Oxygeneous, Carboneous and Nitrogeneous Donors
Marešová, Renata ; Mazúr, Milan (referee) ; Stopka, Pavel (referee) ; Omelka, Ladislav (advisor)
Within the PhD. thesis the problems of H-transfer from selected types of phenols, aromatic secondary amines and compounds with acidic CH bond were investigated. This process was initiated by the action of redox agents, mostly PbO2, in nonpolar solvents. The abstraction of hydrogen atom results in the formation of radical intermediates, which were detected by EPR spectroscopy. Because in most cases, highly unstable radicals were produced, it was neccessary to apply the technique of indirect detection, so called spin trapping. This method enables to interpret the character of generated radicals on the basis of EPR parameters of radical adducts, which are formed by their reaction with suitably chosen compounds, spin traps, which are added to the reaction system. As spin traps, the aromatic nitrosocompounds were preferentially used. Due to the fact that EPR spectra of radical adducts were in most cases very complex, their interpretation was possible only using the computer simulation. Based on this approach, new information about the character of addition of phenoxyl tradicals to aromatic nitrosocompounds, stability of alkyl substituents in methyl substituted phenols and character of C-radicals, generated from substituted coumarines and beta-diketones, was obtained. Simultaneously, the small ability of nitrogen radicals, primary products of the splitting of NH bond, to enter the reaction with spin traps was proved by aromatic secondary amines.
Radical intermediates generated by the splitting of X-H bond in different types of H-donors
Šafaříková, Lenka ; Mazúr, Milan (referee) ; Omelka, Ladislav (advisor)
In the frame of submitted diploma thesis dealing with the radical products of the decomposition of different X-H bonds, primary attention was focused on the detection of radical intermediates from decomposed N-H bonds. This access was realized with secondary amines of N-alkylaniline group, as well as with other structures R1-NH-R2. The aim was to confirm the formation of unstable aminyl radicals R1-N•-R2, which is possible by using spin-trapping method. In the series of experiments, where the compounds of lead and cobalt, as well as stable radical DPPH were applied as initiators of the decomposition, the unambiguous evidence for aminyl radicals was found only in the case of N-alkylanilines. With other secondary amines the detection of aminyl radicals is an open problem, because their adducts with nitrosobenzene are in very low concentration. Besides the study of the decomposition of N-H bonds also the products of the decomposition of phenolic O-H bonds, as well as products of the decomposition of C-H bonds in alkylsubstituents in phenols was studied.
Radical products of the oxidation of selected phenols and amines
Holubcová, Petra ; Mazúr, Milan (referee) ; Omelka, Ladislav (advisor)
In the framework of diploma thesis, radical products of the oxidation of selected para­methyl phenols and secondary amines were investigated. In the case of para-methyl phenols using EPR spectroscopy the reaction mechanism was proved, where the abstraction of hydrogen from para-methyl group is involved. In this way benzyl radicals are formed, which can be identified by spin-trapping technique using nitroso compounds. The adducts formed undergo the consecutive rearrangement, which leads to the formation of the corresponding nitrones. In addition to phenols, the radical products of the oxidation of some secondary amines using peroxy radicals and peroxy acids were studied. In both cases new types of nitroxyle radicals were generated and the EPR parameters were determined by spectral simulation.
Spin-trapping of radical products of H-transfer from oxygeneous donors
Šafaříková, Lenka ; Polovka, Martin (referee) ; Omelka, Ladislav (advisor)
Within the bachelor thesis the evaluation of experimental material focused on EPR study of spin-trapping of phenoxyl radicals on aromatic nitrosocompounds was performed. It was found that phenoxyl radicals from unhindered phenols add to nitrosogroup in the ortho-position. As a result, the nitroxyl radicals are formed. According to the structure of nitrosocompounds this nitroxyl radicals have the character either of phenoxazinoxyl radicals in the case of nitrosobenzene or derivatives of diphenylnitroxyl radical in the case of nitrosoduren. In the work is also documented the specific behavior of some phenols containing methyl group as the para substituent.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.